本书由有着三十余年一线“线性代数”课程教学经验的教师团队组织编写,结合现阶段普通高等学校教学实际,有针对性地选取了基本概念、基本定理,分层次选择了典型例题、典型应用。全书共6章,内容包括线性方程组与行列式、矩阵及其运算、矩阵的初等变换和线性方程组求解、向量组与线性方程组解的结构、矩阵的特征值与二次型、线性空间与线性变换
本书根据高等学校理工类、经管类专业线性代数课程的教学基本要求,并结合全国硕士研究生入学考试大纲的规定内容编写而成,其语言精练,论证简明易懂。本书内容包括n阶行列式、矩阵、向量组与矩阵的秩、线性方程组、特征值与二次型、线性空间与线性变换等内容,每章末配有练习题,书末附有习题参考答案及近十年全国硕士研究生招生考试数学试卷中
外尔不但亲自参与了20世纪上半叶数学、物理学以及数学基础这场影响深远的大发展和大争论,而且作出了重要贡献。这些重大进展的根源都深深埋在整个西方文化——科学与哲学——的深处,他自己也是从这片土壤中成长起来的一位大师。《数学与自然科学之哲学》正是他试图从西方哲学的角度审视数学与物理学的发展,同时也用数学与物理学的成果丰富与
本书是在“数字化”时代背景下,为适应经济、管理类专业在大学数学课程教学中的最新需求而编写的一部微积分教材。 本书分上、下两册,上册主要内容包括函数、极限与连续,导数与微分,微分中值定理与导数应用,不定积分,定积分及其应用;下册主要内容包括多元函数微分学,重积分,无穷级数,常微分方程,差分方程。在书中附有若干微视频,包括
本书内容分为三大部分,第一部分为“同步练习”,该部分主要包括5个模块,即内容提要,典型例题分析,习题精选、习题详解以及拓展训练,旨在帮助读者尽快掌握“高等数学(上册)”课程中的基本内容、基本方法和解题技巧,提高学习效率,第二部分为“模拟试题及详解”,该部分给出了10套模拟试题,并给出了详细解答的过程,旨在检验读者的学习
《数学有玄机:那些意想不到的数学秘密》是一本专为小学生打造的趣味数学读物。全书以人教版小学数学教材为骨架,以“破解数学奥秘”为主线,分为38个主题章节,从古代计数方法讲到现代人工智能中的数学应用,系统梳理了数学的发展脉络与核心知识。 书中既有对课本知识的生动解读——比如用“弦图”证明勾股定理,用“孙子定理”解决余数问
本书是哈尔滨工业大学数学系分析教研室编写的《工科数学分析》(第五版)(上、下册)的配套学习指导用书,本书上册分为七章:函数,极限与连续,导数与微分,微分中值定理与导数的应用,不定积分,定积分,微分方程。下册分为四章:多元函数微分学,多元函数积分学,第二型曲线积分与第二型曲面积分;无穷级数。每章又按照教学基本要求、内容总
《谱算子理论及相关主题:英文》是《国外优秀数学著作原版丛书》中的一部,收录了多位哈尔科夫数学家参与的数学物理研讨会论文。书中主题围绕谱算子理论展开,涵盖了一系列非传统问题,包括一维微分算子的新逆问题、非线性微分方程的谱方法解、大随机矩阵特征值分布及其在统计物理无序系统中的应用,以及谱理论在同质化和遍历动力系统中的研究。
《奇异点理论及其应用:英文》是《国外优秀数学著作原版丛书》中的一部,汇集了莫斯科大学力学与数学系奇点理论研讨会最新研究成果。奇点理论作为数学中高度抽象领域与实际应用之间的桥梁,广泛涉及代数几何、微分几何、拓扑学、辛几何、控制理论、偏微分方程等学科。书中内容不仅包括奇点理论在控制理论、双曲方程系统、实代数几何等领域的应用
本书由黎曼15篇论文构成,展示了黎曼对空间与几何概念的研究成果,每篇都独立成章,涵盖几何、数论、物理等领域,如分析给定边界内的极小曲面、椭圆模函数极限的情况、用三角级数表示函数的方法,以及如何构建积分和微分概念等。