本教材以不可压缩流体为对象,力求深入浅出地介绍计算流体力学的一些基本概念、计算方法,重点阐述如何编写不可压缩湍流流动的CFD程序,尤其是专注于用N-S方程对牛顿流体(如空气和水)运动的处理。
本书在作者多年的研究基础上整理和归纳了稠密气固两相流动中超常颗粒系统(非球形颗粒、湿颗粒)的数值计算模型,详细介绍了超常颗粒与理想球形颗粒系统流动特性的区别,总结和介绍了超常颗粒系统中出现的特有流动结构。本书共7章,第1章对非球形颗粒及湿颗粒气固两相流进行了基本介绍;第2章-第4章对超常颗粒稠密气固两相流动数值计算模型
本书首先综述了国内外在微纳尺度流动与传热领域的前沿研究进展,其次介绍了作者近5年内围绕微通道强化传热技术及纳米流体高效传热性能开展的研究工作,为微通道散热器及纳米流体的工业化应用提供了详实的数据。本书主要分为三部分。第一部分对国内外微通道和纳米流体传热的研究现状进行了综述。第二部分介绍了随着器件散热功率的增大,作者在单
本书重点阐述裂隙介质渗流模型与尺度提升的理论与方法。主要内容包括:岩石中裂隙的基本特征、裂隙介质建模、渗流数值模拟理论和方法、尺度提升与应用实例,以及在尺度提升过程中,等效渗透率和模型精度随裂隙几何特征的变化关系。考虑到裂隙介质的多尺度性等复杂特征,在建模过程中重点介绍了分形理论和逾渗理论的应用。
本书针对目前电磁表面在高性能平面天线的理论研究和光学集成器件的应用研究等方面存在的若干关键的科学问题,开展了系统深入的研究工作。核心工作是提出了极化-相位组合电磁表面调控技术。一方面,对于反射式电磁表面,提出了基于极化转换的镜像组合调控技术和旋转组合调控技术,分别可以用于实现带宽的提升、幅度-相位的同时调控和双圆极化相
本书以静电场、流场等复杂多场作用下细颗粒团聚、迁移与沉积行为为研究对象,发展了粘附性微米颗粒接触相互作用及长程相互作用的快速算法(FastDEM),并将该算法与直接数值模拟结合,揭示了微米颗粒在湍流场内的碰撞与团聚机理,构建了湍流团聚核函数;进一步结合Oseen动力学算法,给出了荷电颗粒群电迁移率及形状演化与荷电强度、
本书介绍了颗粒在流道中的迁移及自组织的应用、特点、重要性、进展以及数值模拟研究的方法;给出了槽道牛顿流中圆形和椭圆形颗粒的迁移和自组织颗粒链的形成过程;揭示了简单剪切流和槽道幂律流中圆形、椭圆形、矩形颗粒的惯性迁移和自组织颗粒链的形成机理;阐述了矩形管道幂律流体中球形颗粒的惯性迁移特征和方形管道中非牛顿流体中颗粒链的形
本书共分4章,第1章介绍了相关的数学背景,阐述了那些与第2章至第4章直接相关且在教科书中不常见的基本数学方法和主题;第2章介绍了流体动力学的不稳定性;第3章阐释了湍流理论的基础知识(如对称性、守恒定律、欧拉方程和纳维—斯托克斯方程),该章引入了理查森-柯尔莫戈洛夫概念(如标度结构函数、耗散标度和融合规则);第4章致力于
本书从流体流动的基本概念出发,在流体动力学方程的基础上,分析了管道内稳态流动及其在血管树结构中的应用,深入探讨了刚性和弹性管道内的脉动流动机理,从流体动力学角度解释了动脉粥样硬化等疾病的形成过程。本书旨在推动不同专业领域的交叉融合,促进对脉动流动的认识与理解,为从事心血管功能及疾病研究、不稳定流动研究的科研人员提供数学
本书涵盖了作者近五年有关高精度离散玻尔兹曼数值方法应用于流体力学问题的研究成果,主要包含不可压流动和可压缩流动两部分。第一部分包含不可压等温流、不可压热流和不可压多相流。第二部分包含无黏可压缩流和黏性可压缩流。此外,还简要介绍了本书涉及的动理学方程和高精度格式。