《微磁学中的弛豫过程(英文影印版)》讲述了微磁学的相关概念。特别地,本书对弛豫过程中的一些现象进行了深入探讨。并且,本书对弛豫的理论分析也给与了详细介绍。本书适合凝聚态物理、固体物理和材料物理领域的研究者参考。
弛豫过程是普遍存在与物理现象中的。在微磁学中,弛豫过程更是必须考虑的对象。国内系统讲述这方面理论的图书非常罕见,《微磁学中的弛豫过程(英文影印版)》的引进对国内的相关研究人员会很有帮助。
(美)祖尔,美国加州大学教授。
Preface vii
Notations and conventions xvii
1 The Classical Magnetization Field 1
1.1 Introduction 1
1.2 Equations of motion 4
1.2.1 Damping 9
1.3 Approaching the Curie temperature 11
2 Small motions of the Magnetization 17
2.1 Introduction 17
2.2 Models of small motions 17
2.2.1 Distributive damping 19
2.2.2 Instabilities and spin wave condensates 21
3 Intrinsic Damping 31
3.1 Introduction 31
3.2 Magnetostrictive coupling 31 Preface vii
Notations and conventions xvii
1 The Classical Magnetization Field 1
1.1 Introduction 1
1.2 Equations of motion 4
1.2.1 Damping 9
1.3 Approaching the Curie temperature 11
2 Small motions of the Magnetization 17
2.1 Introduction 17
2.2 Models of small motions 17
2.2.1 Distributive damping 19
2.2.2 Instabilities and spin wave condensates 21
3 Intrinsic Damping 31
3.1 Introduction 31
3.2 Magnetostrictive coupling 31
3.2.1 Small samples 32
3.2.2 Large, homogeneous samples 35
3.3 Loss torque in magnetic metals 43
3.3.1 Eddy current damping 44
3.3.2 Direct coupling of conduction electrons to the
magnetization field 49
3.4 Fluctuations in medium properties 57
3.5 Relaxation due to weakly coupled magnetic impurities 60
3.5.1 Slow relaxation 61
3.5.2 Corrections to the adiabatic limit 64
3.6 Appendix 3A. Inclusion of displacement current in
Section 3.3.1 67
4 Fluctuations 71
4.1 Introduction 71
4.2 Fluctuation-dissipation theorem 74
4.3 Langevin equation, and generalized Langevin equation 77
4.4 Fokker-Planck equation-cartesians 85
4.4.1 Fokker-Planck equation in polar angles 88
4.4.2 Fokker-Planck equation in the absence of well-defined
canonical variables 89
5 Magnetization Reversal in a Very Dilute Array of Small
Particles 97
5.1 Introduction 97
5.2 General observations 98
5.3 Reversal in 2d 102
5.3.1 Reversal in the long time limit 109
5.3.2 Intermediate time scales 114
5.3.3 Applied field and anisotropy axis misaligned 118
5.3.4 Relation to first-passage type theories 119
5.4 Rotation in 3d 122
6 Magnetization Reversal in Arrays of Particles and
Continuous Media 125
6.1 Introduction 125
6.2 Relaxation due to magnetic moment interaction in
a sparse medium 127
6.2.1 Equations of motion for dipolar interaction 128
6.2.2 A single pair 130
6.3 More dense arrays of many interacting particles 139
6.3.1 The Arnold web 141
6.3.2 Relevance to magnetic relaxation and reversal 143
6.3.3 Effective single-variable relaxation from causes other than
chaos 145
6.4 Magnetization reversal and the magnetization process in
large, dense systems 146
6.4.1 Simple model of magnetization reversal by domain wall
motion 149
6.4.2 Motion of a Bloch domain wall 160
6.4.3 Magnetostatics and the magnetization process.
Pre-existing domain walls 163
6.5 Appendix 6A: Vortex solutions in cylinder and disc: stability
considerations 176
References 185
Subject Index 189