非经典扩散方程和Kirchhoff波动方程的吸引子(英文)
定 价:128 元
- 作者:秦玉明,杨彬
- 出版时间:2024/3/1
- ISBN:9787030780478
- 出 版 社:科学出版社
- 中图法分类:O175.2
- 页码:253
- 纸张:
- 版次:1
- 开本:B5
本书研究的内容为非经典扩散方程在时间依赖空间中的吸引子,受到时间依赖整体吸引子的一些研究成果的启发,我们首先研究了时间依赖整体吸引子和强吸引子的存在性,之后通过调整对时间依赖函数的假设,如重新设置其下界和单调性,得到了一些在时间依赖空间中关于拉回吸引子的存在性和正则性、以及拉回吸引子和整体吸引子的上半连续性的成果,它们都是新的尝试,并且通过这些模型的研究为在时间依赖空间中研究吸引子提供了一些新的思路和方法。此外,注意到时间依赖空间的范数中包含了时间依赖函数,因此很容易知道在此类空间中研究吸引子的存在性或其吸引子的其他性质要比在Sobolev空间中更为复杂和困难,例如在证明吸收集和渐近紧性时计算量会大大增加等。虽然计算和分析较为困难,但相空间范数中时间相关项的存在拓宽了以往的研究框架,使人们能够在更接近物理现实的模型中对解的长时间行为进行讨论,促进了对动力系统解的适定性的研究进程,具有重要意义。
更多科学出版社服务,请扫码获取。
. 非线性发展方程整体适定性和吸引子的研究,上海市自然科学二等奖,2015年,排名第一
Contents
Preface i
CHAPTER 1
Survey on Attractors in Time-Dependent Spaces 1
1.1 Time-Dependent Global Attractors 1
1.1.1 Oscillation Equations 1
1.1.2 Wave Equations 4
1.1.3 Reaction-Diffusion Equations 13
1.1.4 Berger Equations 18
1.1.5 Abstract Evolution Equations 19
1.2 Some Useful Definitions and Lemmas 29
CHAPTER 2
Time-Dependent Global Attractors for the Non-Classical Diffusion Equations with a Fading Memory 35
2.1 Introduction 35
2.2 Time-Dependent Global Attractors in A4t 38
2.2.1 Global Well-Posedness 38
2.2.2 Absorbing Sets 39
2.2.3 Time-Dependent Attractors 41
2.2.4 Regularity of Attractors 47
2.3 Bibliographic Comments 49
CHAPTER 3
Strong Attractors for the Non-Classical Diffusion Equation with a Fading Memory in Time-Dependent Spaces 51
3.1 Introduction 51
3.2 Existence and Uniqueness of Strong Solutions 54
3.3 Time-Dependent Global Attractors for Strong Solutions 58
3.3.1 Absorbing Sets in 58
3.3.2 Time-Dependent Attractors 59
3.4 Bibliographic Comments 61
CHAPTER 4
Long-Time Behavior of Solutions to the Non-Autonomous Non-Classical Diffusion Equations 63
4.1 Introduction 63
4.2 Global Well-Posedness of Solutions 65
4.3 Existence of Pullback Attractors 69
4.3.1 Pullback Dδ,Ht -Absorbing Set 69
4.3.2 Pullback Dδ,Ht -Asymptotical Compactness 71
4.4 Regularity of Attractors 74
4.5 Bibliographic Comments 76
CHAPTER 5
Existence and Upper Semicontinuity of Attractors for Non-Autonomous Nonlocal Diffusion Equations 79
5.1 Introduction 79
5.2 Existence and Uniqueness of Solutions 81
5.3 Existence of the Minimal Pullback P-Attractors 87
5.3.1 Pullback 2)^-Absorbing Family 88
5.3.2 Pullback Asymptotical Compactness 90
5.4 Existence of Pullback Attractors * and Upper Semicontinuity of * and Global Attractor A 93
5.5 Bibliographic Comments 101
CHAPTER 6
Pullback Attractors for Diffusion Equations with a Delay Function and a Nonlocal Diffusion Term in Time-Dependent Spaces 105
6.1 Introduction 105
6.2 Existence and Uniqueness of Solutions 107
6.3 Existence of Pullback Dη–Attractors 113
6.3.1 Pullback Dη-Absorbing Family 113
6.3.2 Pullback Dη- Asymptotical Compactness 119
6.4 Regularity of Pullback Attractors 121
6.5 Bibliographic Comments 123
CHAPTER 7
Existence and Regularity of Pullback Attractors for Non-Classical Diffusion Equations with a Delay Operator 127
7.1 Introduction 127
7.2 Existence and Uniqueness of Solutions 129
7.3 Existence and Priori Estimates of Regularity for Pullback Attractors 134
7.4 Regularity of Pullback Attractors 148
7.5 Bibliographic Comments 151
CHAPTER 8
Survey on Attractors for Kirchhoff Wave Equations with Strong Dampings 153
8.1 Attractors for Kirchhoff Wave Equations with Strong Dampings 153
CHAPTER 9
Existence, Regularity and Fractal Dimension of Global Attractors for a Kirchhoff Wave Equation with Strong Damping and Memory 219
9.1 Introduction 219
9.2 Existence of Global Attractor A 222
9.3 Regularity of Global Attractor A 235
9.4 Fractal Dimension of Global Attractor A of Problem (9.1.1) withδ= 0 238
9.5 Bibliographic Comments 243
Bibliography 247