本书是以卷积神经网络在高光谱影像分类中的应用为线索进行编写。全书内容分为7章:第1章介绍了高光谱影像分类的国内外研究现状,以及高光谱影像数据特点和评价指标;第2章介绍了卷积神经网络的原理,总结了卷积神经网络的发展现状,分析了卷积神经网络在高光谱影像分类中的应用情况;第3章至第6章分别介绍了结合纹理特征的双通道卷积神经网络、宽残差网络、残差密集网络、残差注意力网络等用于高光谱影像分类的卷积神经网络模型;第7章对本书所介绍的内容进行了总结,并就卷积神经网络在高光谱影像分类中的应用情况进行了展望。
本书以卷积神经网络在高光谱影像分类中的应用为出发点,针对高光谱影像分类遇到的问题、数据的特点,以及卷积神经网络模型如何解决高光谱影像分类中的问题进行总结,并提出相应的改进模型和实验验证。本书语言简洁,深入浅出,通俗易懂,不仅适合遥感相关专业本科及研究生作为参考教材,还可作为从事遥感影像处理与分析的专业人员的技术参考书。
前 言高光谱遥感技术经过三十多年的发展,在信息获取方面表现出了巨大的优势和潜力。高光谱影像分类是高光谱遥感影像分析和应用的关键技术之一,但在实际应用中仍面临着诸多问题,如维数灾难、非线性数据结构、不适定问题、空间同质性和异质性等,制约了高光谱遥感影像分类的进一步发展。近年来,为充分利用高光谱遥感影像中包含的丰富信息,越来越多的机器学习和人工智能算法在高光谱影像分类技术的研究中得到应用,特别是以卷积神经网络为代表的深度学习算法,在高光谱影像分类中表现出了优异的性能。本书围绕卷积神经网络在高光谱影像分类中的应用展开讨论和分析。全书内容共分为7章。第1章结合高光谱遥感技术的发展论述了高光谱影像分类的内涵,总结了高光谱影像分类的主要技术方法,并由此引出了高光谱影像分类技术所涉及的主要问题。第2章介绍了卷积神经网络的基础理论,对卷积神经网络的发展现状进行了总结,研究分析了卷积神经网络在高光谱影像分类中的应用情况。第3章针对传统高光谱影像分类算法中空间信息利用不足的问题,通过引入局部二值模式、三维Gabor等纹理特征和双通道卷积神经网络模型,介绍了一种结合纹理特征的双通道卷积神经网络高光谱影像分类方法。第4章重点讨论了在卷积神经网络基础上发展的残差网络,针对深层残差网络存在特征重用减少的问题,设计了适用于高光谱影像分类的宽残差网络。第5章分析了残差网络的模型内部结构,构建了残差密集网络模型,充分利用了网络模型中不同单元提取的分层特征。第6章引入了注意力机制,设计了适用于高光谱影像分类的残差注意力网络,对网络模型中不同残差单元输出的特征赋以不同的权重,提取出更为有效的特征集,增强了提取特征的可分性。第7章对本书所介绍的内容进行了总结,对卷积神经网络在高光谱影像分类中的应用前景进行了展望。伴随着获取手段和处理技术的不断丰富,高光谱遥感技术在现代科技发展进程中发挥着巨大的作用。同时,高光谱影像分类的理论和技术也在不断地充实、发展和完善之中,本书仅结合当前的典型技术方法进行提炼和总结。限于作者的学术水平,部分研究有待深化,书中一定存在错误及疏漏之处,欢迎读者们批评指正。
魏祥坡,博士,中国人民解放军战略支援部队信息工程大学副教授、主要从事目标智能识别、高光谱遥感方面的研究工作。2019年毕业于战略支援部队信息工程大学获测绘科学与技术博士学位。目前主持了河南省自然科学基金1项,作为核心成员参与了国家自然科学基金项目、国家高分专项、河南省科技攻关项目等地方和军队科研项目10余项。发表论文20余篇,授权软件著作权3项,受理专利申请6项。
第1章 绪论 1
1.1 高光谱影像分类:原理、方法和问题 1
1.2 高光谱影像分类技术研究现状 3
1.3 高光谱影像数据 9
1.4 研究内容及章节安排 10
第2章 卷积神经网络 13
1.1 卷积神经网络基础理论 13
1.2 卷积神经网络研究现状 16
1.3 卷积神经网络在高光谱影像分类中的应用 19
第3章 结合纹理特征的双通道卷积神经网络分类方法 23
3.1 双通道卷积神经网络 23
3.2 高光谱影像纹理特征提取 26
3.3 结合纹理特征的双通道卷积神经网络高光谱影像分类 28
3.4 实验与分析 31
3.5 小结 36
第4章 利用宽残差网络的高光谱影像分类 38
4.1 残差网络 38
4.2 宽残差网络 42
4.3 宽残差网络的高光谱影像分类 45
4.4 实验与分析 48
4.5 小结 55
第5章 利用残差密集网络的高光谱影像分类 56
5.1 残差密集网络 56
5.2 残差密集网络的高光谱影像分类 59
5.3 实验与分析 60
5.4 小结 63
第6章 利用残差通道注意力网络的高光谱影像分类 65
6.1 注意力机制 65
6.2 残差通道注意力网络 69
6.3 残差通道注意力网络的高光谱影像分类 70
6.4 实验与分析 73
6.5 小结 78
第7章 总结与展望 80
7.1 总结 80
7.2 展望 81
参考文献 83
附录一 术语中英文对照表92
附录二 彩图95