“高等数学”是大学教育的一门重要基础课程。为了提高大学生的独立思考能力、解决问题能力和自我判断能力,我们编写了这本没有参考答案的作业集。本作业集与同济大学数学系编写的《高等数学》第六版相配套,《高等数学作业集(活页)》内容主要包括:一元函数微分学、一元函数积分学、微分方程、空间解析几何与向量代数、多元函数微分学、重积分、曲线积分、曲面积分和无穷级数。希望本作业集能够为大学生掌握“高等数学”的知识提供一条有效的途径,也希望本作业集能够为我国大学生素质教育做一次有益的尝试。
本作业集与同济大学《高等数学》第六版相配套,按照《高等数学》第六版的知识点结构设置内容,包含了其中全部十二章的作业习题。本作业集的编写一方面减轻了学生抄写作业题的负担;另一方面也有助于教师批改作业,有助于作业习题等资料的保存。
本作业集主要有如下特点:1.在每一章节分别设置了基础篇、提高篇和自选篇,旨在帮助学生迅速全面地掌握高等数学的内容,同时为考研打下一定的基础。2.按章节的安排,采取活页的设置,收取方便。
本作业集由北京林业大学.首都师范大学及北京邮电大学的十余位有丰富教学经验的教师合作编写,不仅可供使用同济大学《高等数学》的师生选用,教、学高等数学课程的其他师生同样适用。
第一章 函数与极限
第一节 映射与函数
第二节 数列的极限
第三节 函数的极限
第四节 无穷小与无穷大
第五节 极限运算法則
第六节 极限存在准則两个重要极限
第七节 无穷小的比较
第八节 函数的连续性与间断点
第九节 连续函数的运算与初等函数的连续性
第十节 闭区间上连续函数的性质
第一章综合练习题
第二章 导数与微分
第一节 导数概念
第二节 函数的求导法则
第三节 高阶导数
第四节 隐函数及由参数方程所确定的函数的导数相关变化率
第五节 函数的微分
第二章综合练习题
第三章 微分中值定理与导数的应用
第一节 微分中值定理
第二节 洛必达法则
第三节 泰勒公式
第四节 函数的单调性与曲线的凹凸性
第五节 函数的极值与最大值最小值
第六节 函数图形的描绘
第七节 曲率
第八节 方程的近似解
第三章综合练习题
第四章 不定积分
第一节 不定积分的概念与性质
第二节 换元积分法
第三节 分部积分法
第四节 有理函数的积分
第五节 积分表的使用
第四章综合练习题
第五章 定积分
第一节 定积分的概念与性质
第二节 微积分基本公式
第三节 定积分的换元法和分部积分法
第四节 反常积分
第五章综合练习题
第六章 定积分的应用
第一节 定积分的元素法
第二节 定积分在几何学上的应用
第三节 定积分在物理学上的应用
第六章综合练习题
第七章 微分方程
第一节 微分方程的基本概念
第二节 可分离变量的微分方程
第三节 齐次方程
第四节 一阶线性微分方程
第五节 可降阶的高阶微分方程
第六节 高阶线性微分方程
第七节 常系数齐次线性微分方程
第八节 常系数非齐次线性微分方程
第七章综合练习题
高等数学(上)模拟题一
高等数学(上)模拟题二
第八章 空间解析几何与向量代数
第一节 向量及其线性运算
第二节 数量积向量积
第三节 曲面及其方程
第四节 空间曲线及其方程
第五节 平面及其方程
第六节 空间直线及其方程
第八章综合练习题
第九章 多元函数微分法及其应用
第一节 多元函数的基本概念
第二节 偏导数
第三节 全微分
第四节 多元复合函数的求导法則
第五节 隐函数的求导公式
第六节 多元函数微分学的几何应用
第七节 方向导数与梯度
第八节 多元函数的极值及其求法
第九章综合练习题
第十章 重积分
第一节 二重积分的概念与性质
第二节 二重积分的计算法
第三节 三重积分
第四节 重积分的应用
第十章综合练习题
第十一章 曲线积分与曲面积分
第一节 对弧长的曲线积分
第二节 对坐标的曲线积分
第三节 格林公式及其应用
第四节 对面积的曲面积分
第五节 对坐标的曲面积分
第六节 高斯公式通量与散度
第七节 斯托克斯公式环流量与旋度
第十一章综合练习题
第十二章 无穷级数
第一节 常数项级数的概念和性质
第二节 常数项级数的审敛法
第三节 幂级数
第四节 函数展开成幂级数
第五节 函数的幂级数展开式的应用
第七节 傅里叶级数
第八节 一般周期函数的傅里叶级数
第十二章综合练习题
高等数学(下)模拟题一
高等数学(下)模拟题二