"组合数学中存在着大量精巧且富有趣味性的问题,本书由此出发,逐步引出组合数学中的常用技巧和重要深刻的理论思想,旨在围绕组合数学中的基础研究对象和基本研究方法,着重阐述组合数学思想和方法的应用。本书还特别加入了重要理论方法产生的历史背景及相关人物介绍。本书内容编写力求通俗流畅,深入浅出,生动灵活,主要内容包括基本计数问题
"本书的目的是为将Lie代数和Lie群应用于解决科学和工程中出现的问题的研究人员和实践者提供工具。作者解决了用一种更合适的基来表示在任意基上得到的Lie代数的问题,在这种基中Lie代数的所有基本特征都是直接可见的。这包括实现直和分解、识别根和Levi分解、计算零根和Casimir不变量。每种算法都给出了实例。对于低维L
"Lie超代数是Lie代数的自然推广,在几何、数论、规范场论和弦理论中都有应用。本书发展了Lie超代数的理论、它们的包络代数和它们的表示。本书的前五章介绍了Lie超代数的基本性质,包括所有经典单Lie超代数的显式构造;研究和描述了在这里更为微妙的Borel子代数;引入了逆步Lie超代数,使得对多个结果可以采用统一方法处
"本书在编者多年讲授线性代数课程的基础上编写而成,编者对如何在教材中贯彻应用型人才培养目标,加强学生数学应用能力的培养有丰富的经验。本书内容精简,突出应用,便于教学,符合应用型人才培养的教学实际。本书系统地介绍了线性代数的基本概念和理论。全书共7章,包括行列式、矩阵、向量、线性方程组、矩阵的相似对角化、二次型、用MAT
本书带领读者循序渐进地学习还原三阶魔方的操作方法。本书分为5章,分别是三阶魔方的基础知识及还原手法、三阶魔方公式还原基础、还原三阶魔方的底层、还原三阶魔方的中层和还原三阶魔方的顶层。还原三阶魔方的整个过程可以不记复杂公式,只用左右手手法,如果想要提高还原速度,可以在还原顶层时将手法和公式相结合。
高等代数是本科院校师范类和理工类专业一门重要的基础理论课程。它在培养学生抽象概括能力、逻辑思维能力、运算能力方面的独特作用可为学生终身可持续发展打好数学基础,是其他课程无法替代的。然而,由于应用型本科院校在我国的发展历史相对较短,《高等代数》教材的编写又是一件费时费力、十分繁杂的工作,对编写者的要求较高,不仅要熟悉应用
魔方是一项广受欢迎的益智游戏,但很多人往往因为不得其法而打退堂鼓,书中介绍了可以帮助读者快速入门并进阶的方法,致力于帮助读者玩通魔方。全书分为6章,前4章主要介绍了还原三阶魔方的基础手法,以及还原三阶魔方的底层、中层和顶层的具体步骤,第5章和第6章则分别介绍了还原二阶和四阶魔方的详细步骤。采用分步骤、分层次的讲解形式介
《线性代数习题详解与提高》是北京建筑大学数学系编写的《线性代数》(2019版)的配套教材。本书对《线性代数》各章知识进行了梳理和总结,包括知识脉络图、知识要点和学习要求;对各章的习题和复习题做了详尽的解答;同时,为满足学有余力的读者的需要,还补充了“常见题型”部分,其中不乏考研真题,这部分题目在难度和解题技巧方面都有进
2022年度国家出版基金项目《丢番图逼近与超越数》中的一册。给出数的几何的基本结果和一些数论应用。基本结果包括凸体和格的性质,Minkowski第一和第二凸体定理,Minkowski-Hlawka容许格定理,Mahler列紧性定理,二次型的约化理论及堆砌与覆盖等;数论应用有四平方和定理及Hurwitz逼近定理等的证明。
2022年度国家出版基金项目《丢番图逼近与超越数》中的一册。着重讲述超越数论中代数无关性理论的一些重要结果,包括Nesterenko方法及其对于Ramenujan函数和Mahler函数的应用、零点重数估计、π和eπ的代数无关性、Philippon代数无关性判别法则等;还给出Liouville数、广义Mahler级数以及